Appropriate Mathematical Understanding for Effective Teaching

Ann Kajander, Associate Professor, Faculty of Education

This work is funded by the NSERC University of Manitoba CRYSTAL grant Understanding the Dynamics of Risk and Protective Factors in Promoting Success in Science and Mathematics Education
"CRYSTAL in the Classroom" presentation, February, 2010

Overview

$\square 5$ year study of elementary and early secondary teachers, both preservice (over 500) and in-service (about 100)
\square Examined beliefs about mathematics as well as knowledge, and how these developed during professional development
\square Quantitative and qualitative study (statistically analysed written survey, semi-structured interviews, classroom observations, professional learning group observations, focus groups etc)

My own viewpoint ... math or education?

Previously ...
\square Undergraduate mathematics degree
\square Graduate mathematics education background
\square Contract lecturer in the Mathematics Department
\square Classroom teacher

Currently ...
\square Mathematics educator in the Faculty of Education

Mathematics Needs of Teachers: Are they

\square remedial?

\square specialised?
\square both?

Math is the "deal-breaker" for reform:

\square For example, Wong \& Lai (2006) found that mathematics knowledge as needed for teaching "is the crucial factor leading to effective mathematics teaching" (p.1)
\square A distinct body of knowledge (Davis \& Simmt, 2006)

"Mathematics for Teaching"

\square Specialised knowledge not needed in other settings (Ball, Thames \& Phelps, 2008)
\square It is "qualitatively different" (Davis \& Simmt, 2006, p. 294) than the knowledge expected of students
\square Not statistically related to subject-content knowledge (Wong \& Lai, 2006)
\square Tends to "fall through the cracks" in teacher education (Kajander, in press)

An Example

\square The paper pieces represent one whole cut into fifths
\square Take out four of those fifths and:
A. Show $3 / 4$ of the $4 / 5$

Conceptual Knowledge

\square Starting with $4 / 5$ we see that $3 / 4$ of it is $3 / 5$

Procedural Knowledge

$$
\frac{3}{4} \times \frac{4}{5}=\frac{3 \times 4}{4 \times 5}=\frac{12}{20}=\frac{12 \div 4}{20 \div 4}=\frac{3}{5}
$$

Another example with the fifths

\square Start with your four fifths model again
\square Now show $2 / 3$ of the $4 / 5$

Another example with the fifths

\square Start with your four fifths model again
\square Now show $2 / 3$ of the $4 / 5$

Another example with the fifths

\square Start with your four fifths model again
\square Now show $2 / 3$ of the $4 / 5$

Another example with the fifths

Another example with the fifths

Another example with the fifths

What if ...?

\square What if we asked for a model to solve

$$
\begin{array}{lllll}
\underline{3} & \times & \underline{2} & & ? \\
4 & & 5
\end{array}
$$

Would we have managed (necessarily) to illustrate the standard procedure?

$3 / 4$ of $2 / 5$

\square Start with a two fifths model
\square Now show $3 / 4$ of the $2 / 5$

$3 / 4$ of 2/5

\square Start with a two fifths model
 \square Now show $3 / 4$ of the $2 / 5$

We want students to find the answer as an area that is 3×2, out of a total area of 4×5, in order to "invent" the standard procedure

$3 / 4$ of $2 / 5$

\square What about this way?

$3 / 4$ of $2 / 5$

\square Oops The model can be used to do this without cutting it up like the standard procedure (Idea: $3 / 4$ of $4 / 10$ is $3 / 10$)

"Math for Teaching"

\square As well as deeply understanding the models, a teacher would have to know which models would give the best chance of students actually deriving the mathematical ideas intended in a lesson

Summary:

\square Procedural knowledge
\square Conceptual knowledge
\square Mathematics for Teaching

This study focused on the conceptual knowledge which underpins mathematics for teaching

What’s "different" from content knowledge?
\square Mathematics for Teaching is a kind of specialised conceptual knowledge that allows teachers to help students necessarily develop new concepts from previously learned (and relatively more concrete) ideas.
\square (Other aspects include knowledge of students’ typical errors and how to identify the mathematical elements of these, and so on)

According to the literature

\square Mathematics educators have argued for some time for the need for such a "specialised" study of mathematics for teachers (eg. Davis and Simmt, 2003; 2006; Ball, Hill, and Bass, 2005; Ball, Thames, and Phelps, 2008; Silverman and Thompson, 2008; Kajander, 2007) in which the mathematics contains ideas generally not included in standard undergraduate mathematics courses

How much time?

\square National Council on Teacher Quality (2008)
\square Working Group on Elementary Mathematics for Teaching (CMEF 2009)
\square Lakehead University BEd candidates (none to potentially 72 hours upon entry; potential for 12 to 32 more hours during BEd year)

The Study - Both preservice and in-service teachers

The Study

\square Five year study of junior intermediate (grades 4 to 10) preservice teachers in their teacher certification year ($\mathrm{N}>500$), as well as inservice teachers (about 100).
\square Quantitative data (pre/post survey)
\square Qualitative data (semi-structured interviews, samples of their work, journals and emails)

The instrument

\square Survey has been created and statistically validated using a well-known large-scale instrument (Hill et al, 2004) for assessing teachers’ content knowledge (Kajander, 2007;
Zerpa, 2008; Zerpa, Kajander \& van Barneveld, 2009)

The instrument

\square Mathematics items separated into sub-categories:

Procedural Knowledge (PK): eg. Calculate $13 / 4 \div 1 / 2$ showing your steps

Conceptual Knowledge (CK): eg. Explain why and how the method you used works, using explanations, diagrams, models, and examples as appropriate

1. Results - Preservice teachers

\square Pre and post-test scores for 4 years $(\mathrm{N}=426)$
\square Pretest scores for 5 years $(N=585)$

Results to date for the following

research questions:

\square Does high school and university mathematics background make a difference in teacher candidates’ initial conceptual knowledge (CK) as they enter a mathematics methods course?
\square What university mathematics courses make the most difference? (What is 'enough' preparation?)
\square What levels of conceptual understanding of mathematics as needed for teaching are demonstrated by teacher candidates upon entry to the teacher certification program?

Results - High school background

\square Candidates with more and higher level mathematics courses in high school arrived at methods courses significantly better prepared in terms of conceptual understanding (CK).
\square For example, people with grade 11 advanced or university level courses were generally stronger that those with grade 12 general or non "U" level courses

University background

\square Candidates with a math or science-related undergraduate degree ($\mathrm{N}=97$) vs. other degree ($\mathrm{N}=486$) were significantly stronger procedurally and conceptually at the beginning of the methods course and remained so at the end

BUT

\square None of the subgroups (including those with a 'math'-related degree) demonstrated strong or even adequate conceptual understanding of grade 4 to 10 mathematics at the start of the teacher certification program (Initial conceptual knowledge means of each cohort are consistently about 10 to 20 \%).

Levels of knowledge by undergraduate majors entering BEd

procedural
knowledge
conceptual
knowledge

Math, Engineering,
Science Majors
82\%
21\%

Other Majors
69\%
11\%

Types of undergraduate math courses

$\square \quad$ Pretest mean scores in CK; pretest total $\mathrm{N}=585$, overall mean 12.5%, (descriptive statistics only):

1. no university math courses (9\%); N=267
2. undergraduate math course for teachers only (12\%); N=74
3. at least one regular math course but not teachers' course (16\%); N=232
4. teachers' course plus one or more other undergrad math (22\%); N = 12

Issue with appropriate content

\square MOST students taking undergrad math course for teachers are primary junior (for teaching up to grade 6) and many have a very weak high school background
\square Is there a need for a separate section or a new course focused more on the content related to the intermediate level which would better support both J/I (gr 4-10) and I/S (gr 7-12) teacher candidates?

Types of undergraduate math courses

\square Post-test mean scores in CK; post-test total $\mathrm{N}=426$, overall mean 54.5\% (descriptive statistics only):

1. no university math courses (49\%)
2. undergraduate math course for teachers only (51\%)
3. at least one regular math course but not teachers' course (63\%)
4. teachers' course plus one or more other undergrad math (58\%)

Teachers may need BOTH general math background and specialised background ...

\square The highest performing group in initial conceptual knowledge were those with at least one regular undergraduate math course PLUS the specialised undergraduate course for education students, but this is a small sample
\square Candidates with math background but without specialised background initially did not start out as the strongest subgroup, but became so at the end
$\square \quad$ Further data supports the idea that the more specialised experiences support the greatest growth

During the methods course Math for Teaching course

Conceptual Knowledge

2. Results: In-service teachers

\square Professionally delivered mathematics in-service effectiveness examined ($\mathrm{N}=40$)
\square Professional Learning group meetings (about 45 meetings attended, 6 different teacher groups)
\square Classroom observations and semi-structured interviews ($\mathrm{N}=4$)
\square Focus group meetings (6-8 teachers, 8 meetings)
\square Survey results ($\mathrm{N}=50$)
\square (Note that all samples are "biased")

Results

\square Professional development supports significant growth in conceptual understanding of mathematics, as well as corresponding beliefs changes
\square Development is relative to initial position

Secondary vs. Elementary

\square We have no evidence that secondary teachers generally have deeper conceptual understanding of intermediate mathematics; and we have some case study evidence that indicates they do not

Math as the "deal breaker" to reform:

- "I'm just no good in math. When I don't get it the kids see that. I just have to go by the text because I don't know what else to do. One of the biggest fears I have is will I teach it wrong or they will ask a question I do not have an answer to."
\square "Today we just had so much fun! When I get it I feel so confident and we can have so much fun exploring things in math. I wish I could do that all the time"

What "works" ?

\square Individual mentorship
\square Professional Learning groups with a strong task and goal-oriented focus and committed participants, who have access to a subject specialist as needed
\square Professionally-delivered in-service opportunities which have a strong conceptual mathematics basis, for those that volunteer

Summary

\square High school and university math background does make some difference in conceptual understanding of mathematics as needed for teaching
\square Specialised undergraduate mathematics courses also contribute, including when taken in conjunction with other undergraduate math courses
\square Highly specialized math courses taken concurrently with methods courses appear to help significantly
\square Many in-service teachers are also in need of specialised content-based support

Conclusions

All teachers, including those with stronger levels of general mathematics background, need specialised opportunities for mathematics professional development for teaching.

